4x^2-80x+279=253

Simple and best practice solution for 4x^2-80x+279=253 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 4x^2-80x+279=253 equation:



4x^2-80x+279=253
We move all terms to the left:
4x^2-80x+279-(253)=0
We add all the numbers together, and all the variables
4x^2-80x+26=0
a = 4; b = -80; c = +26;
Δ = b2-4ac
Δ = -802-4·4·26
Δ = 5984
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5984}=\sqrt{16*374}=\sqrt{16}*\sqrt{374}=4\sqrt{374}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-80)-4\sqrt{374}}{2*4}=\frac{80-4\sqrt{374}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-80)+4\sqrt{374}}{2*4}=\frac{80+4\sqrt{374}}{8} $

See similar equations:

| 0=16t^2+32t+5.2 | | 9=-6m-21 | | 4x^2-80+279=253 | | 4(n)=-2n2+4 | | 5y-y³=12 | | 13-2c+1=2c+4+3c | | -187=-17r | | 3/4m-6=-3 | | 2x^2-40x+13=0 | | 1/2n+10=1/4n+54 | | -2(-w+2w-3)=30 | | d2=289 | | (x+4)/6+(x-5)/12=14 | | 17=13-6×a | | 16x-10+9=99 | | 3/7​=t/4​ | | 37​=t4​ | | s2=196 | | 20x+1,800=20x | | (x+4)/(6)+(x-5)/(12)=14 | | -8+g=-11 | | 7y+7=6-Y | | (3x+9)+(3x+8)+(3x)=(3x)+(3x)+(4x+2) | | -9(t-2)=2(t+9) | | 15=-6+3x | | q=0.3 | | 4^2-4x=17 | | 6(8x+5)=-3(2-4x) | | 5x/9=-5 | | 4-t=3(+-1)-5 | | 2=x-7/0.10 | | 2*4-1=3*4w+2 |

Equations solver categories